A Schoenflies Extension Theorem for a Class of Locally Bi-lipschitz Homeomorphisms

نویسندگان

  • JASUN GONG
  • J. GONG
چکیده

In this paper we prove a new version of the Schoenflies extension theorem for collared domains Ω and Ω in Rn: for p ∈ [1, n), locally bi-Lipschitz homeomorphisms from Ω to Ω with locally p-integrable, second-order weak derivatives admit homeomorphic extensions of the same regularity. Moreover, the theorem is essentially sharp. The existence of exotic 7-spheres shows that such extension theorems cannot hold, for p > n = 7.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Relative Schoenflies Theorem

We prove generalizations of the relative Schoennies extension theorem for topo-logical, quasiconformal, or bi-Lipschitz embeddings due to Gauld and VV aiss all a, and show that maximal dilatations and bi-Lipschitz constants of the extensions can be controlled.

متن کامل

2 00 9 Invariance of Regularity Conditions under Definable , Locally Lipschitz , Weakly Bi - Lipschitz Mappings

In this paper we describe the notion of a weak lipschitzianity of a mapping on a C stratification. We also distinguish a class of regularity conditions that are in some sense invariant under definable, locally Lipschitz and weakly bi-Lipschitz homeomorphisms. This class includes the Whitney (B) condition and the Verdier condition.

متن کامل

Titchmarsh theorem for Jacobi Dini-Lipshitz functions

Our aim in this paper is to prove an analog of Younis's Theorem on the image under the Jacobi transform of a class functions satisfying a generalized Dini-Lipschitz condition in the space $mathrm{L}_{(alpha,beta)}^{p}(mathbb{R}^{+})$, $(1< pleq 2)$. It is a version of Titchmarsh's theorem on the description of the image under the Fourier transform of a class of functions satisfying the Dini-Lip...

متن کامل

Quasiconformal and Bi-lipschitz Homeomorphisms, Uniform Domains and the Quasihyperbolic Metric

Let D be a proper subdomain of R" and kD the quasihyperbolic metric defined by the conformal metric tensor ds2 = dist(x, dD)~2ds2. The geodesies for this and related metrics are shown, by purely geometric methods, to exist and have Lipschitz continuous first derivatives. This is sharp for kD; we also obtain sharp estimates for the euclidean curvature of such geodesies. We then use these results...

متن کامل

Multiplicity mod 2 as a Metric Invariant

We study the multiplicity modulo 2 of real analytic hypersurfaces. We prove that, under some assumptions on the singularity, the multiplicity modulo 2 is preserved by subanalytic bi-Lipschitz homeomorphisms of R. In the first part of the paper, we find a subset of the tangent cone which determines the multiplicity mod 2 and prove that this subset of S is preserved by the antipodal map. The stud...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009